705,666 research outputs found

    Observations and models for needle-tissue interactions

    Get PDF
    The asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. In this study we present a mechanics-based model that calculates the deflection of the needle embedded in an elastic medium. Microscopic observations for several needle- gel interactions were used to characterize the interactions at the bevel tip and along the needle shaft. The model design was guided by microscopic observations of several needle- gel interactions. The energy-based model formulation incor- porates tissue-specific parameters such as rupture toughness, nonlinear material elasticity, and interaction stiffness, and needle geometric and material properties. Simulation results follow similar trends (deflection and radius of curvature) to those observed in macroscopic experimental studies of a robot- driven needle interacting with different kinds of gels. These results contribute to a mechanics-based model of robotic needle steering, extending previous work on kinematic models

    The Role of Intracellular Interactions in the Collective Polarization of Tissues and its Interplay with Cellular Geometry

    Full text link
    Planar cell polarity (PCP), the coherent in-plane polarization of a tissue on multicellular length scales, provides directional information that guides a multitude of developmental processes at cellular and tissue levels. While it is manifest that cells utilize both intracellular and intercellular mechanisms, how the two produce the collective polarization remains an active area of investigation. We study the role of intracellular interactions in the large-scale spatial coherence of cell polarities, and scrutinize the role of intracellular interactions in the emergence of tissue-wide polarization. We demonstrate that nonlocal cytoplasmic interactions are necessary and sufficient for the robust long-range polarization, and are essential to the faithful detection of weak directional signals. In the presence of nonlocal interactions, signatures of geometrical information in tissue polarity become manifest. We investigate the deleterious effects of geometric disorder, and determine conditions on the cytoplasmic interactions that guarantee the stability of polarization. These conditions get progressively more stringent upon increasing the geometric disorder. Another situation where the role of geometrical information might be evident is elongated tissues. Strikingly, our model recapitulates an observed influence of tissue elongation on the orientation of polarity. Eventually, we introduce three classes of mutants: lack of membrane proteins, cytoplasmic proteins, and local geometrical irregularities. We adopt core-PCP as a model pathway, and interpret the model parameters accordingly, through comparing the in silico and in vivo phenotypes. This comparison helps us shed light on the roles of the cytoplasmic proteins in cell-cell communication, and make predictions regarding the cooperation of cytoplasmic and membrane proteins in long-range polarization.Comment: 15 pages Main Text + 8 page Appendi

    Microscopic observations of needle and soft-tissue simulant interactions

    Get PDF
    Currently, physicians have no means of correctly estimating the needle tip location during percutaneous needle insertion. A model of needle-tissue interaction that predicts the needle tip location would assist physicians in pre-operative planning and hence improve needle targeting accuracy. This study is aimed to investigate the interactions of bevel-tipped needles and soft tissue in situ, using agarose gel as a soft-tissue simulant. An experimental setup is designed to record the needle-gel interaction forces and torques during needle insertion. Gel rupture during needle insertion is observed using a Laser Scanning Confocal Microscope and recorded in time series and three-dimensional images (Figure). Experimental results show the possibility of observing in situ gel rupture during needle insertion and relating them to the needle-gel interaction forces and torques. Moreover, it is seen that the maximum force along the insertion axis, |Fz max|, is proportional to bevel angle and inversely proportional to insertion speed. The maximum resultant torque, ||Tr max||, is found to be inversely proportional to bevel angle and proportional to insertion speed. However, the influence of the increase in insertion speed in |Fz max| and ||Tr max|| diminishes as insertion speed increases. These results concur with observations noted in gel rupture images

    Multiscale modelling of cancer progression and treatment control : the role of intracellular heterogeneities in chemotherapy treatment

    Get PDF
    Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.PostprintPeer reviewe

    Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules

    Get PDF
    Motivation: Network-based genome-wide association studies (GWAS) aim to identify functional modules from biological networks that are enriched by top GWAS findings. Although gene functions are relevant to tissue context, most existing methods analyze tissue-free networks without reflecting phenotypic specificity. Results: We propose a novel module identification framework for imaging genetic studies using the tissue-specific functional interaction network. Our method includes three steps: (i) re-prioritize imaging GWAS findings by applying machine learning methods to incorporate network topological information and enhance the connectivity among top genes; (ii) detect densely connected modules based on interactions among top re-prioritized genes; and (iii) identify phenotype-relevant modules enriched by top GWAS findings. We demonstrate our method on the GWAS of [18F]FDG-PET measures in the amygdala region using the imaging genetic data from the Alzheimer's Disease Neuroimaging Initiative, and map the GWAS results onto the amygdala-specific functional interaction network. The proposed network-based GWAS method can effectively detect densely connected modules enriched by top GWAS findings. Tissue-specific functional network can provide precise context to help explore the collective effects of genes with biologically meaningful interactions specific to the studied phenotype

    Origins of the avian neural crest: the role of neural plate-epidermal interactions

    Get PDF
    We have investigated the lineage and tissue interactions that result in avian neural crest cell formation from the ectoderm. Presumptive neural plate was grafted adjacent to non-neural ectoderm in whole embryo culture to examine the role of tissue interactions in ontogeny of the neural crest. Our results show that juxtaposition of non-neural ectoderm and presumptive neural plate induces the formation of neural crest cells. Quail/chick recombinations demonstrate that both the prospective neural plate and the prospective epidermis can contribute to the neural crest. When similar neural plate/epidermal confrontations are performed in tissue culture to look at the formation of neural crest derivatives, juxtaposition of epidermis with either early (stages 4–5) or later (stages 6–10) neural plate results in the generation of both melanocytes and sympathoadrenal cells. Interestingly, neural plates isolated from early stages form no neural crest cells, whereas those isolated later give rise to melanocytes but not crest-derived sympathoadrenal cells. Single cell lineage analysis was performed to determine the time at which the neural crest lineage diverges from the epidermal lineage and to elucidate the timing of neural plate/epidermis interactions during normal development. Our results from stage 8 to 10+ embryos show that the neural plate/neural crest lineage segregates from the epidermis around the time of neural tube closure, suggesting that neural induction is still underway at open neural plate stages

    Functionalized Carbon Nanotubes in the Brain: Cellular Internalization and Neuroinflammatory Responses

    Get PDF
    The potential use of functionalized carbon nanotubes (f-CNTs) for drug and gene delivery to the central nervous system (CNS) and as neural substrates makes the understanding of their in vivo interactions with the neural tissue essential. The aim of this study was to investigate the interactions between chemically functionalized multi-walled carbon nanotubes (f-MWNTs) and the neural tissue following cortical stereotactic administration. Two different f-MWNT constructs were used in these studies: shortened (by oxidation) amino-functionalized MWNT (oxMWNT-NH3+) and amino-functionalized MWNT (MWNT-NH3+). Parenchymal distribution of the stereotactically injected f-MWNTs was assessed by histological examination. Both f-MWNT were uptaken by different types of neural tissue cells (microglia, astrocytes and neurons), however different patterns of cellular internalization were observed between the nanotubes. Furthermore, immunohistochemical staining for specific markers of glial cell activation (GFAP and CD11b) was performed and secretion of inflammatory cytokines was investigated using real-time PCR (qRT-PCR). Injections of both f-MWNT constructs led to a local and transient induction of inflammatory cytokines at early time points. Oxidation of nanotubes seemed to induce significant levels of GFAP and CD11b over-expression in areas peripheral to the f-MWNT injection site. These results highlight the importance of nanotube functionalization on their interaction with brain tissue that is deemed critical for the development nanotube-based vector systems for CNS application

    A level-set method for the evolution of cells and tissue during curvature-controlled growth

    Full text link
    Most biological tissues grow by the synthesis of new material close to the tissue's interface, where spatial interactions can exert strong geometric influences on the local rate of growth. These geometric influences may be mechanistic, or cell behavioural in nature. The control of geometry on tissue growth has been evidenced in many in-vivo and in-vitro experiments, including bone remodelling, wound healing, and tissue engineering scaffolds. In this paper, we propose a generalisation of a mathematical model that captures the mechanistic influence of curvature on the joint evolution of cell density and tissue shape during tissue growth. This generalisation allows us to simulate abrupt topological changes such as tissue fragmentation and tissue fusion, as well as three dimensional cases, through a level-set-based method. The level-set method developed introduces another Eulerian field than the level-set function. This additional field represents the surface density of tissue synthesising cells, anticipated at future locations of the interface. Numerical tests performed with this level-set-based method show that numerical conservation of cells is a good indicator of simulation accuracy, particularly when cusps develop in the tissue's interface. We apply this new model to several situations of curvature-controlled tissue evolutions that include fragmentation and fusion.Comment: 15 pages, 10 figures, 3 supplementary figure

    Multiple changes in gene expression in chronic human Achilles tendinopathy

    Get PDF
    Atlas™ cDNA cell interaction arrays (CLONTECH) were used to examine degenerate tissue from four patients with Achilles tendon disorders, in order to identify changes in expression of genes important in cell–cell and cell–matrix interactions. The greatest difference between normal (post-mortem) and degenerate tissue samples was in the level of MMP-3 (stromelysin) mRNA, which was down-regulated in all the degenerate samples. Quantitative RT-PCR assay of RNA extracted from paired ‘normal’ and degenerate Achilles tendon tissue samples taken from tendons during surgery mirrored the results of the arrays. Levels of MMP-3 mRNA were lower, whereas levels of type-I and type-III collagen mRNAs were significantly higher, in the degenerate compared to the ‘normal’ samples. Immunoblotting of proteins extracted from the same tendon samples showed that three of four normal tissue samples taken from individuals without apparent tendon disorder had much higher levels of MMP-3 protein than ‘normal’ or degenerate samples from patients with tendinosis. We suggest that MMP-3 may play an important role in the regulation of tendon extracellular matrix degradation and tissue remodelling
    corecore